Thursday 15 August 2013


 ns-2.34 Configuring with Eclipse Galileo in Ubuntu 12.04


In this post I shall explain about how to configure ns-2.34 with Eclipse Galileo. I faced certain problems while configuring ns-2.34 with eclipse as after successful configuration ns-2.34 would compile with errors. This gave me headaches and after lot of working around I found the correct method. So this guide would configure ns-2.34 with eclipse and ns-2.34 would build and compile without giving any errors.
Operating System   : Ubuntu 12.04
Network Simulator v: ns-2.34

Note: Hope u have downloaded and installed ns-allinone-2.34 fixed and patched by me. If you have not u can follow the guide <here>.
First of all in order to run eclipse u need to set up a JAVA environment on your UBUNTU 12.04. Three easy commands in the terminal will set it up for u, if JAVA environment is not present on your Ubuntu.
Open Terminal using Ctrl + Alt + T. And enter the following commands one after the another..
sudo apt-get install openjdk-7-jre
sudo apt-get install openjdk-7-jdk
sudo apt-get install icedtea6-plugin
This setups a Java environment for you.
Step 1) Download Eclipse Galileo (Eclipse IDE for C/C++ developers) from the eclipse website. Or u can download it from <here>.
U also need to download the CDT plugin for Eclipse. U can download it from <here> or from eclipse website.


Step 2) Extract eclipse in the home directory by right clicking on the file eclipse-cpp-galileo-linux-gtk.tar.gz and selecting open with archive manager. Now extract it using the extract button in the home directory. After extraction a directory with the name eclipse should be created in your home directory.

Step 3) Now right click on the file (i.e. the CDT plugin downloaded) cdt-master-6.0.2.zip and select open with archive manager. Now extract it using the extract button on top. Note: When u extract it, extract it inside the eclipse directory created earlier in your home directory and not anywhere else.

Step 4) Now open the eclipse folder and run eclipse. It will ask to select a workspace. Browse to the ns-allinone-2.34 directory in your home folder and select it. U can also make it default and set it to not ask each and every time u start eclipse.

Step 5) After eclipse opens. Browse to File –> New –> C++ Project.

Step 6) A window will open asking u to create a C++ Project. (Now u need to be careful)
In the Project Name field enter ns-2.34. It shall prompt that a directory/project with that name already exists. Ignore it.

Now under the Project Type. Select MakeFile Project.
And Under MakeFile Project. Select Empty Project.
Now Under the ToolChains section (on the right). Select Linux GCC.
And press Next.
Step 7) Now ns-2.34 will be added under your projects listing. To the left of the eclipse window.
Now go to Project –> Build All (It shall build without any errors.)
Now go to Project –> Clean and select ns-2.34 and press OK. (It shall compile without any errors).
Now go to Run –> Run (A % sign should appear on the console below).

Installing ns-2.34 (network simulator) in Ubuntu 12.04 LTS 


Recently, I had been trying to install ns-2.34 in my ubuntu 12.04 which i have on a HP G62 pavilion notebook. Although i successfully installed it many a times but it was just a basic install (i.e. for a noob to work upon with basic tcl scripting and viewing simulations). Installing it completely without any compilation errors was the most challenging task as in order to modify ns2 u have to install it flawlessly.
In this post I shall teach you how to install ns-2.34 in ubuntu 12.04 (specifically).
First of all u need to download my version of ns-2.34 from the link given below. In this version of ns-2.34, I have made all the necessary changes (i.e. to Makefile and certain other files in ns-2.34 directory).
Download it from here.
The package is a complete ns-allinone-package with all changes done without the need of having u to make any further changes. If the following steps are followed in order u might get a full clean install of ns2.
Note : We shall install ns-2.34 in the home directory and no where else. So please copy the downloaded file in your home directory. And if u do not know where the home directory is u can google it :) .
Step 1) Remove any previous ns2 versions installed on your OS
rm -rf /home/<your-homedirectory-name>/ns-allinone-2.34
instead of ns-allinone-2.34 u can put prior versions of ns2 if installed. And to find your home directory open terminal using Ctrl + Alt + T and then type pwd in it.
Step 2) After step 1, enter the following commands
sudo apt-get update
sudo apt-get install build-essential autoconf automake libxmu-dev libxt-dev libx11-dev xorg-dev xgraph gcc g++
The above command will install all necessary dependencies in order for ns-2.34 to run and install successfully.
Step 3) Now unzip the downloaded ns-allinone-2.34.tar.gz folder by right clicking on it and selecting open with archive manager and extract it in your home folder. Then open terminal using Ctrl + Alt + T.
Browse to the ns-allinone-2.34 directory by typing :
cd ns-allinone-2.34
now browse to ns-2.34 directory by typing :
cd ns-2.34
now type the following commands in order.
./configure
make clean
make depend
make
They should run successfully without showing any error. If you get any problems ask in comments.
Now go back to ns-allinone-2.34 directory by typing
cd ..
Now install ns-2.34 by typing
./install
It should install successfully. Now close the terminal by typing exit. If u get any errors ask in comments section.
Step 4) Now its time to setup your environment variables. This is the tricky part.
open terminal by pressing Ctrl + Alt + T. And enter the following command:
sudo gedit ~/.bashrc
bashrc file would open in gedit. At the end of the file add the following lines (Do it carefully)
# LD_LIBRARY_PATH
OTCL_LIB=/home/arya/ns-allinone-2.34/otcl-1.13
NS2_LIB=/home/arya/ns-allinone-2.34/lib
X11_LIB=/usr/X11R6/lib
USR_LOCAL_LIB=/usr/local/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$OTCL_LIB:$NS2_LIB:$X11_LIB:$USR_LOCAL_LIB
# TCL_LIBRARY
TCL_LIB=/home/arya/ns-allinone-2.34/tcl8.4.18/library
USR_LIB=/usr/lib
export TCL_LIBRARY=$TCL_LIB:$USR_LIB
# PATH
XGRAPH=/home/arya/ns-allinone-2.34/bin:/home/arya/ns-allinone-2.34/tcl8.4.18/unix:/home/arya/ns-allinone-2.34/tk8.4.18/unix:/home/arya/ns-allinone-2.34/xgraph-12.1/
NS=/home/arya/ns-allinone-2.34/ns-2.34/
NAM=/home/arya/ns-allinone-2.34/nam-1.13/
export PATH=$PATH:$XGRAPH:$NS:$NAM

NOTE: change arya in the above paths to your home directory’s name. (DO NOT FORGET THAT).
Close the bashrc file. Log off and log in again.
Step 5) Now open terminal using Ctrl + Alt + T and type ns.
A % sign should appears and that marks a clean installation of ns-2.34.

New Unicast Routing Protocol for MANETs* in ns-2.34.. (With tcl file)


In this post I would tell u about how to successfully perform the steps to Implement a New Unicast Routing Protocol for MANETs by F. J. Ros and P. M. Ruiz While performing this task I faced a no. of problems. The tutorial by F. J. Ros and P. M. Ruiz is complete for a beginner to start working with. However it has certain anomalies (not in the code) such as typographical errors or case sensitivity problems. The tutorial is also designed for earlier versions of ns2. So I tried working on this tutorial which is quite excellent and and after facing a lot of problems and issues I successfully implemented it in ns-2.34.
If u perform the steps according to this post. U shall be able to implement the protocol succesfully. I shall not go into explaining the source code as it has already been beautifully explained in the original document. The source of  the document is given at the end of this post. Thus, for successfull implementation u should read this post very carefully.
NOTE: Beware of Case Sensitiveness and perform as I shall tell below.
Step 1) First of all create a directory in your ns-2.34 directory with the following files.
protoname_pkt.h
protoname_rtable.cc
protoname_rtable.h
Protoname.cc        \\ Note the capital P in the beginning (it should be capital P)
protoname.h
Step 2) The code for protoname_pkt.h is given below (u can copy paste)
#ifndef PROTONAME_PKT_H_
#define PROTONAME_PKT_H_

#include <packet.h>
#include <config.h>
#include <random.h>
#include <timer-handler.h>
#include <trace.h>
#include <classifier-port.h>
#define HDR_PROTONAME_PKT(p) hdr_protoname_pkt::access(p)
struct hdr_protoname_pkt {
nsaddr_t pkt_src_;       //Node which originated this packet
u_int16_t pkt_len_;    //Packet length (in bytes)
u_int8_t pkt_seq_num_; //Packet Sequence Number
inline nsaddr_t& pkt_src() {return pkt_src_;}
inline u_int16_t& pkt_len() {return pkt_len_;}
inline u_int8_t& pkt_seq_num() {return pkt_seq_num_;}
static int offset_;
inline static int& offset() {return offset_;}
// To access the hdr_protoname_pkt packet header in a packet pointed by p, we use the access fn
inline static hdr_protoname_pkt* access(const Packet* p) {
return (hdr_protoname_pkt*)p->access(offset_);
}
};
#endif /* PROTONAME_PKT_H_ */

Step 3) The code for protoname_rtable.cc is given below
#include "protoname_rtable.h"
#include "ip.h"

protoname_rtable::protoname_rtable() { }
void protoname_rtable::print(Trace* out) {
sprintf(out->pt_->buffer(), "p\tdest\tnext");
out->pt_->dump();
for (rtable_t::iterator it = rt_.begin(); it != rt_.end(); it++) {
sprintf(out->pt_->buffer(), "P\t%d\t%d", (*it).first, (*it).second);
out->pt_->dump();
}
}
void
protoname_rtable::clear() {
rt_.clear();
}
void
protoname_rtable::rm_entry(nsaddr_t dest) {
rt_.erase(dest);
}
void
protoname_rtable::add_entry(nsaddr_t dest, nsaddr_t next) {
rt_[dest] = next;
}
nsaddr_t
protoname_rtable::lookup(nsaddr_t dest) {
rtable_t::iterator it = rt_.find(dest);
if (it == rt_.end())
return IP_BROADCAST;
else
return (*it).second;
}
u_int32_t
protoname_rtable::size() {
return rt_.size();
}

Step 4) The code for protoname_rtable.h is given below

#ifndef PROTONAME_RTABLE_H_
#define PROTONAME_RTABLE_H_

#include <trace.h>
#include <map>
#include <ip.h>
typedef std::map<nsaddr_t, nsaddr_t> rtable_t;
class protoname_rtable {
rtable_t rt_;
public:
protoname_rtable();
void print(Trace*);
void clear();
void rm_entry(nsaddr_t);
void add_entry(nsaddr_t, nsaddr_t);
nsaddr_t lookup(nsaddr_t);
u_int32_t size();
};
#endif /* PROTONAME_RTABLE_H_ */

Step 5) The code for Protoname.cc is given below

#include "protoname.h"
#include "protoname_pkt.h"
#include "protoname_rtable.h"
#include <timer-handler.h>
#include <node.h>
#include <random.h>
#include <cmu-trace.h>
#include <iostream>
#include <classifier-port.h>
#include <packet.h>
#include <address.h>

// To Bind our packet in OTcl Interface
int hdr_protoname_pkt::offset_;
static class ProtonameHeaderClass : public PacketHeaderClass {
public:
ProtonameHeaderClass() : PacketHeaderClass("PacketHeader/PROTONAME", sizeof(hdr_protoname_pkt)) {
bind_offset(&hdr_protoname_pkt::offset_);
}
}class_rtProtoProtoname_hdr;
static class ProtonameClass : public TclClass
{
public:
ProtonameClass() : TclClass("Agent/PROTONAME") {}
TclObject* create(int argc, const char*const* argv) {
assert(argc==5);
return(new Protoname((nsaddr_t)Address::instance().str2addr(argv[4])));
}
}class_rtProtoProtoname;
void
Protoname_PktTimer::expire(Event* e) {
agent_->send_protoname_pkt();
agent_->reset_protoname_pkt_timer();
}
Protoname::Protoname(nsaddr_t id) : Agent(PT_PROTONAME), pkt_timer_(this) {
bind_bool("accessible_var_", &accessible_var_);
ra_addr_ = id;
}
int
Protoname::command(int argc, const char*const* argv) {
if(argc == 2) {
if (strcasecmp(argv[1], "start") == 0) {
pkt_timer_.resched(0.0);
return TCL_OK;
}
else if (strcasecmp(argv[1],"print_rtable") == 0) {
if(logtarget_ != 0) {
sprintf(logtarget_->pt_->buffer(), "P %f _%d_ Routing Table", CURRENT_TIME, ra_addr());
logtarget_->pt_->dump();
rtable_.print(logtarget_);
}
else {
fprintf(stdout, "%f _%d_ If you want to print this routing table ""you must create a trace file in your TCL Script",CURRENT_TIME, ra_addr());
}
return TCL_OK;
}
}
else if (argc == 3) {
//Obtains corresponding dmux to carry packets to upper layer
if (strcmp(argv[1], "port-dmux") == 0) {
dmux_ = (PortClassifier*)TclObject::lookup(argv[2]);
if (dmux_ == 0) {
fprintf(stderr, "%s: %s lookup of %s failed \n", __FILE__,argv[1],argv[2]);
return TCL_ERROR;
}
return TCL_OK;
}
//Obtains corresponding tracer
else if (strcmp(argv[1], "log-target") == 0 || strcmp(argv[1], "tracetarget") == 0) {
logtarget_ = (Trace*)TclObject::lookup(argv[2]);
if (logtarget_ == 0)
return TCL_ERROR;
return TCL_OK;
}
}
//Pass the command to the base class
return Agent::command(argc, argv);
}
void
Protoname::recv(Packet* p, Handler* h) {
struct hdr_cmn* ch    = HDR_CMN(p);
struct hdr_ip* ih     = HDR_IP(p);
if (ih->saddr() == ra_addr()){
//If there exists a routing loop, drop the packet
if(ch->num_forwards() > 0) {
drop(p, DROP_RTR_ROUTE_LOOP);
return;
}
//else if this is a packet I am originating, must add IP header
else if(ch->num_forwards() == 0)
ch->size() += IP_HDR_LEN;
}
// If it is a protoname packet, must process it
if(ch->ptype() == PT_PROTONAME)
recv_protoname_pkt(p);
//Otherwise, must forward the packet (unless TTL reaches zero
else {
ih->ttl_--;
if(ih->ttl_ == 0) {
drop(p, DROP_RTR_TTL);
return;
}
forward_data(p);
}
}
void
Protoname::recv_protoname_pkt(Packet* p) {
struct hdr_ip* ih                = HDR_IP(p);
struct hdr_protoname_pkt* ph    = HDR_PROTONAME_PKT(p);
// All routing messages are sent from and to port RT_PORT, so we shall check it
assert(ih->sport() == RT_PORT);
assert(ih->dport() == RT_PORT);
/* processing of protoname packet */
// Release resources
Packet::free(p);
}
void
Protoname::send_protoname_pkt() {
Packet* p                        = allocpkt();
struct hdr_cmn* ch                = HDR_CMN(p);
struct hdr_ip* ih                = HDR_IP(p);
struct hdr_protoname_pkt* ph     = HDR_PROTONAME_PKT(p);
ph->pkt_src()                     = ra_addr();
ph->pkt_len()                    = 7;
ph->pkt_seq_num()                = seq_num_++;
ch->ptype()                        = PT_PROTONAME;
ch->direction()                    = hdr_cmn::DOWN;
ch->size()                        = IP_HDR_LEN + ph->pkt_len();
ch->error()                        = 0;
ch->next_hop()                    = IP_BROADCAST;
ch->addr_type()                    = NS_AF_INET;
ih->saddr()                     = ra_addr();
ih->daddr()                        = IP_BROADCAST;
ih->sport()                        = RT_PORT;
ih->dport()                        = RT_PORT;
ih->ttl()                        = IP_DEF_TTL;
Scheduler::instance().schedule(target_, p, JITTER);
}
void
Protoname::reset_protoname_pkt_timer() {
pkt_timer_.resched((double)5.0);
}
void
Protoname::forward_data(Packet* p) {
struct hdr_cmn* ch = HDR_CMN(p);
struct hdr_ip* ih = HDR_IP(p);
if(ch->direction() == hdr_cmn::UP && ((u_int32_t)ih->daddr() == IP_BROADCAST || ih->daddr() == ra_addr())) {
dmux_->recv(p, NULL);
return;
}
else {
ch->direction() = hdr_cmn::DOWN;
ch->addr_type() = NS_AF_INET;
if ((u_int32_t)ih->daddr() == IP_BROADCAST)
ch->next_hop() = IP_BROADCAST;
else {
nsaddr_t next_hop = rtable_.lookup(ih->daddr());
if(next_hop == IP_BROADCAST) {
debug("%f: Agent %d can not forward a packet destined to %d \n", CURRENT_TIME,ra_addr(),ih->daddr());
drop(p, DROP_RTR_NO_ROUTE);
return;
}
else
ch->next_hop() =  next_hop;
}
Scheduler::instance().schedule(target_, p, 0.0);
}
}

Step 6) The code for protoname.h is given below

#ifndef PROTONAME_H_
#define PROTONAME_H_

#include "protoname_pkt.h"
#include "protoname_rtable.h"
#include <agent.h>
#include <packet.h>
#include <trace.h>
#include <timer-handler.h>
#include <random.h>
#include <classifier-port.h>
#include "arp.h"
#include "ll.h"
#include "mac.h"
#include "ip.h"
#include "delay.h"
#define CURRENT_TIME Scheduler::instance().clock()
#define JITTER (Random::uniform()*0.5)
class Protoname;    //Forward Declaration
/* TIMERS */
class Protoname_PktTimer : public TimerHandler {
public :
Protoname_PktTimer(Protoname* agent) : TimerHandler() {
agent_ = agent;
}
protected:
Protoname* agent_;
virtual void expire(Event* e);
};
/* Agent */
class Protoname : public Agent {
/* Friends */
friend class Protoname_PktTimer;
/*Private Members*/
nsaddr_t             ra_addr_;
//protoname_state     state_;
protoname_rtable     rtable_;
int                 accessible_var_;
u_int8_t             seq_num_;
protected :
PortClassifier*     dmux_;            //For Passing Packets Up To Agents
Trace*                logtarget_;        //For Logging
Protoname_PktTimer     pkt_timer_;        //Timer for sending packets
inline nsaddr_t&         ra_addr()             {return ra_addr_; }
//inline protoname_state& state()                {return state_;}
inline int&             accessible_var()     {return accessible_var_;}
void forward_data(Packet*);
void recv_protoname_pkt(Packet*);
void send_protoname_pkt();
void reset_protoname_pkt_timer();
public:
Protoname(nsaddr_t);
int command(int, const char*const*);
void recv(Packet*, Handler*);
};
#endif /* PROTONAME_H_ */

Note: Now we have to make changes to certain ns-2.34 files. The steps given below are most important for successful implementation so perform them very carefully.
Step 7) Open file packet.h under ns-2.34/common/packet.h. Do the changes given below.
Under typedef unsigned int packet_t; lots of constants would have been defined.
Go down and at Line 182 u will find
// AOMDV packet
static const packet_t PT_AOMDV = 61;

After it insert the line as follows
// insert new packet types here
static const packet_t    PT_PROTONAME = 62;

and change PT_NTYPE value from 62 (earlier) to 63 now.
static packet_t PT_NTYPE = 63; // This MUST be the LAST one
Then in the same file move down till u find p_info(). In it search for the function
static packetClass classify(packet_t type) {
and perform the following changes in it by entering the 2nd line below.

type == PT_AODV ||
type == PT_PROTONAME)
return ROUTING;

In the same file, go below and search for the function static void initName(). Now at the end of this function u shall find this

// AOMDV patch
name_[PT_AOMDV]= "AOMDV";

After this enter the following line.

name_[PT_PROTONAME] = "PROTONAME";
name_[PT_NTYPE]= "undefined"; // let it remain as it is

Step 8) Open the file cmu-trace.h under ns-2.34/trace/cmu-trace.h
At line 162 u shall find

void    format_aomdv(Packet *p, int offset);

After it enter the following line

void format_protoname(Packet *p, int offset);

Step 9) Now open the file cmu-trace.cc in the same folder ns-2.34/trace/cmu-trace.h
Include the following header file at the beginning.

#include <protoname/protoname_pkt.h>

Now at the end write the following code ( u can always copy-paste) :)

void
CMUTrace::format_protoname(Packet* p, int offset)
{
struct hdr_protoname_pkt* ph = HDR_PROTONAME_PKT(p);

if(pt_->tagged()) {
sprintf(pt_->buffer() + offset, “-PROTONAME:o %d -PROTONAME:s %d -PROTONAME:l %d”, ph->pkt_src(), ph->pkt_seq_num(), ph->pkt_len());
}
else if (newtrace_) {
sprintf(pt_->buffer() + offset, “-P PROTONAME -Po %d -Ps %d -Pl %d “, ph->pkt_src(), ph->pkt_seq_num(), ph->pkt_len());
}
else {
sprintf(pt_->buffer() + offset, “[PROTONAME %d %d %d] “, ph->pkt_src(), ph->pkt_seq_num(), ph->pkt_len());
}
}
After the above steps search for the function (in the same file) at Line 1305 (most probably)

void CMUTrace::format(Packet* p, const char *why)

move down and after

case PT_PING:
break;

Enter the following lines

case PT_PROTONAME:
format_protoname(p, offset);
break;

Step 10) Open the file ns-packet.tcl under ns-2.34/tcl/lib/ns-packet.tcl
Search at Line 113 for
foreach prot {
Enter the following after to it to make it look like this

foreach prot {
PROTONAME
# Common:
Common
Flags
IP     # IP
# Routing Protocols:
NV     # NixVector classifier for stateless routing
....

Step 11) Open the file ns-default.tcl under ns-2.34/tcl/lib/ns-default.tcl
In the end of the file enter the following line

Agent/PROTONAME set accessible_var_ true

Step 12) Open the file ns-lib.tcl under ns-2.34/tcl/lib/ns-lib.tcl
Search at Line 604 for the function
Simulator instproc create-wireless-node args {
Go below and after

switch -exact $routingAgent_ {

Enter the following lines

PROTONAME {
set ragent [$self create-protoname-agent $node]
}

To make it look like this
switch -exact $routingAgent_ {
PROTONAME {
set ragent [$self create-protoname-agent $node]
}
DSDV {
set ragent [$self create-dsdv-agent $node]
}

Now in the same file go at last or end and enter the following lines

Simulator instproc create-protoname-agent { node } {
# Create Protoname Routing Agent
set ragent [new Agent/PROTONAME [$node node-addr]]
$self at 0.0 "$ragent start"
$node set ragent_ $ragent
return $ragent
}

Step 13) Open file priqueue.cc under ns-2.34/queue/priqueue.cc
Search for the function at Line 82.
PriQueue::recv(Packet *p, Handler *h)

After case PT_AOMDV: enter the following line

case PT_PROTONAME:

It should look like this

case PT_AOMDV:
case PT_PROTONAME:
recvHighPriority(p, h);
break;

Step 14) Now changes to be done in Makefile.in

Under INCLUDES add the following directory

-I./wpan \
-I./protoname

Under OBJ_CC do the following changes at the end.

protoname/Protoname.o protoname/protoname_rtable.o \
@V_STLOBJ@

Step 15) Now save your project and move to the command line Ctrl + Alt + T.
Browse to directory ns-2.34 under ns-allinone-2.34 directory.
Perform the following commands in order.

./configure

make clean
make depend // Optional
make
sudo make install
U shall get no errors. If you are getting any errors ask in the comments section.
Step 16) Now we have to make a tcl file to test the protocol.
In home directory. Create a tcl file with the name exproto.tcl. The contents of the tcl file are as follows (I have defined 6 nodes)

# Define options
set val(chan) Channel/WirelessChannel ;# channel type
set val(prop) Propagation/TwoRayGround ;# radio-propagation model
set val(netif) Phy/WirelessPhy ;# network interface type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) CMUPriQueue ;# interface queue type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 50 ;# max packet in ifq
set val(nn) 6 ;# number of mobilenodes
set val(rp) PROTONAME ;# routing protocol
set val(x) 1000 ;# X dimension of topography
set val(y) 1000 ;# Y dimension of topography
set val(stop) 150 ;# time of simulation end

set ns [new Simulator]
set tracefd [open simple.tr w]
set namtrace [open simwrls.nam w]
$ns trace-all $tracefd
$ns namtrace-all-wireless $namtrace $val(x) $val(y)
# set up topography object
set topo [new Topography]
$topo load_flatgrid $val(x) $val(y)
create-god $val(nn)
# configure the nodes
$ns node-config -adhocRouting $val(rp) \
-llType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifqLen $val(ifqlen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channelType $val(chan) \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace ON
for {set i 0} {$i < $val(nn) } { incr i } {
set n($i) [$ns node]
}
# Provide initial location of mobilenodes
$n(0) set X_ 100.0
$n(0) set Y_ 200.0
$n(0) set Z_ 0.0
$n(1) set X_ 200.0
$n(1) set Y_ 400.0
$n(1) set Z_ 0.0
$n(2) set X_ 500.0
$n(2) set Y_ 600.0
$n(2) set Z_ 0.0
$n(3) set X_ 400.0
$n(3) set Y_ 500.0
$n(3) set Z_ 0.0
$n(4) set X_ 700.0
$n(4) set Y_ 400.0
$n(4) set Z_ 0.0
$n(5) set X_ 500.0
$n(5) set Y_ 800.0
$n(5) set Z_ 0.0
# Set a TCP connection between n(1) and n(3)
set tcp [new Agent/TCP/Newreno]
$tcp set class_ 2
set sink [new Agent/TCPSink]
$ns attach-agent $n(1) $tcp
$ns attach-agent $n(3) $sink
$ns connect $tcp $sink
set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ns at 10.0 “$ftp start”
# Set a TCP connection between n(2) and n(4)
set tcp [new Agent/TCP/Newreno]
$tcp set class_ 2
set sink [new Agent/TCPSink]
$ns attach-agent $n(2) $tcp
$ns attach-agent $n(4) $sink
$ns connect $tcp $sink
#defining heads
$ns at 0.0 “$n(0) label CH”
$ns at 0.0 “$n(1) label Source”
#$ns at 0.0 “$n(2) label N2″
$ns at 10.0 “$n(2) setdest 785.0 228.0 5.0″
$ns at 13.0 “$n(4) setdest 700.0 20.0 5.0″
$ns at 15.0 “$n(3) setdest 115.0 85.0 5.0″
#Color change while moving from one group to another
$ns at 73.0 “$n(2) delete-mark N2″
$ns at 73.0 “$n(2) add-mark N2 pink circle”
$ns at 124.0 “$n(1) delete-mark N11″
$ns at 124.0 “$n(1) add-mark N11 purple circle”
$ns at 103.0 “$n(5) delete-mark N5″
$ns at 103.0 “$n(5) add-mark N5 white circle”
$ns at 87.0 “$n(3) delete-mark N26″
$ns at 87.0 “$n(3) add-mark N26 yellow circle”
$ns at 92.0 “$n(0) delete-mark N14″
$ns at 92.0 “$n(0) add-mark N14 green circle”
# Define node initial position in nam
for {set i 0} {$i < $val(nn)} { incr i } {
# 20 defines the node size for nam
$ns initial_node_pos $n($i) 20
}
# Telling nodes when the simulation ends
for {set i 0} {$i < $val(nn) } { incr i } {
$ns at $val(stop) “$n($i) reset”;
}
# ending nam and the simulation
$ns at $val(stop) “$ns nam-end-wireless $val(stop)”
$ns at $val(stop) “stop”
$ns at 150.01 “puts \”end simulation\” ; $ns halt”
proc stop {} {
global ns tracefd namtrace
$ns flush-trace
close $tracefd
close $namtrace
exec nam simwrls.nam &
}
$ns run
Save and close it.
Step 17) Now open terminal and type ns exproto.tcl
It shall run perfectly and nam should open.
The trace file should look as follows.

s 0.007102330 _0_ RTR  --- 0 PROTONAME 27 [0 0 0 0] ------- [0:255 -1:255 32 0] [PROTONAME 0 0 7]
r 0.008123076 _1_ RTR  --- 0 PROTONAME 27 [0 ffffffff 0 800] ------- [0:255 -1:255 32 0] [PROTONAME 0 0 7]
s 0.044061336 _1_ RTR  --- 1 PROTONAME 27 [0 0 0 0] ------- [1:255 -1:255 32 0] [PROTONAME 1 0 7]
r 0.045102081 _0_ RTR  --- 1 PROTONAME 27 [0 ffffffff 1 800] ------- [1:255 -1:255 32 0] [PROTONAME 1 0 7]
r 0.045102081 _3_ RTR  --- 1 PROTONAME 27 [0 ffffffff 1 800] ------- [1:255 -1:255 32 0] [PROTONAME 1 0 7]
...........
...........

Step 18) Now u have successfully implemented the unicast routing protocol for MANETs. U should not face any problems if you follow the above steps. However I have used Eclipse Galileo for the developing environment and prefer u to also use the same. Search my blog for configuring ns-2.34 with eclipse.
* Source – Implementing a New Manet Unicast Routing Protocol in NS2 by Francisco J. Ros, and Pedro M. Ruiz <download tutorial>

Display Rout Table of AODV in ns-2.34

In this post I shall tell about how to display routing table of nodes while using AODV protocol. I read various tutorials online but most of them failed to exactly display the routing tables or were unable to exactly specify where to put the print_routing_table() function. And by using these methods I kept getting segmentation faults or huge files displaying routing tables even when the node count was 5 with only 1 traffic source. However i have used some of those tutorials and modded them to work fine “cuz u know no one writes code from scratch”. My grandfather did that and he is old by now.
Let’s begin:
Step 1) Open file aodv_rtable.h . Go to class aodv_rtable and in its public scope declare a member function
void rt_display(nsaddr_t id);
Step 2) Open file aodv_rtable.cc . Go to end and type this (read copy-paste :) )

void
aodv_rtable::rt_display(nsaddr_t id)
{
FILE *dumpFile;
dumpFile = fopen("rtable.txt", "a+");
aodv_rt_entry *rt = rthead.lh_first;
for(; rt; rt = rt->rt_link.le_next) {
// You can add more route table entries if you want to. See aodv_rtable.h for more entries.
fprintf(dumpFile, "NODE: %d \t %f \t %d \t %d \t %d \t %d \t %.4f \t %d \n", id, CURRENT_TIME,
rt->rt_dst, rt->rt_nexthop, rt->rt_hops, rt->rt_seqno, rt->rt_expire, rt->rt_flags);
}
fclose(dumpFile);
}

Step 3) (Important One) Open file aodv.cc . Go to the function
AODV::rt_update(aodv_rt_entry *rt, .... )
At the end of inside this function call the rt_display() function as:
rtable.rt_display(index);
Step 4) Compile using make and sudo make install inside the ns-2.34 directory.
Step 5) run your tcl file (here is the file if u want to test). The rtable.txt should look like this rtable.txt  ..

Awk Script to Print Network Statistics

Image
Hi Folks,
In this post I, shall give u an awk file I wrote that prints several network statistics of interest (these are of course the basic ones cuz i ain’t that good at statistics). Being fed up with lots of awk files floating on the net and most of them don’t work or work on old trace formats of ns-2.34. So I planned to write my own awk script for my simulations.
[ AWK FILE SCRIPT DOWNLOAD]
This awk script i wrote is for 50 nodes and by minor modifications it can be changed to any no. I have used it for 150 nodes. The statistics u can calculate with this file are:
  • Total Packets Sent
  • Total Packets Received
  • Total Packets Dropped
  • Total Packets Forwarded
  • Packet Delivery Ratio %
  • The total hop counts are
  • Average Hop Count
  • Routing Overhead
  • Normalized Routing Load
  • Througphut of the network (KBps)
  • Average End to End Delay
  • Total Energy Consumed
  • Protocol Energy Consumption
Some of these metrics I have calculated using the above shown image. However energy consumption metrics have been calculated by me. When u run this awk script using the command :
awk -f statistics.awk xyz.tr   (xyz.tr is your trace file name)
statistics.awk creates 5 files (which contain info related with each node) in your directory they are:
  • energyleft.txt
  • pktdrop.txt
  • pktfwd.txt
  • pktrecvd.txt
  • pktsent.txt
Note:- This statistics.awk file was made for 50 nodes. However in the awk file i have put comments so as to where u need to make changes in order to run it for any number of nodes.
My view:- I wrote it according to my own logic and understanding however some logic may be wrong or may not be optimal or may be very time consuming. If any suggestions are there for improving this code. Please suggest. Thanks
Let’s support the research community by sharing our code and not hiding it.

  Extension PGECET 2013 Certificate Verification Entry Dates

ME/M.TECH/M.PHARM Counselling:
Certificate verification / Web counseling for admission into ME/M.Tech/M.Pharm/M.Arch for the academic year 2013-14 commenced from 30th July 2013 and is scheduled rank wise upto 11th August 2013, whereas option entry is scheduled up to 16th August 2013. So far about 45000 students have attended for certificate verification. In view of the disturbances in some places the certificate verification is extended up to 16th August 2013(Except on 15th August 2013) and option entry is extended upto 19th August 2013. The students those who could not get their certificates verified as per the schedule may attend for the same at any Help line center on or before 16th August 2013 5 P.M. The option entry schedule is available on the website
http://pgecet.apsche.ac.in. except on 15th August 2013.

S.No Ranks Option entry Date
1 GATE / GPAT All
PGECET up to Rank 4000
16-08-2013 & 17-08-2013
2 PGECET Rank 4001 to Last Rank 18-08-2013 & 19-08-2013

Graduate Aptitude Test in Engineering GATE 2014

Graduate Aptitude Test in Engineering (GATE) is an all India examination administered and conducted jointly by the Indian Institute of Science and seven Indian Institutes of Technology that are listed below on behalf of the National Coordination Board - GATE, Department of Higher Education, Ministry of Human Resource Development (MHRD), Government of India.

The GATE committee, which comprises of representatives from the administering institutes, is the sole authority for regulating the examination and declaring the results.The overall coordination and responsibility of conducting GATE 2014 lies with Indian Institute of Technology Kharagpur, designated as the Organizing Institute for GATE 2014.



Download GATE 2013 Poster Here

New in GATE 2014
1) Examinations for all the 21 papers will be conducted by an ONLINE Computer Based Test (CBT). The online examination paper will contain some questions for which numerical answers must be keyed in by the candidate using the virtual keypad. Rest of the questions shall be of Multiple Choice Question (MCQ) type.

2) GATE 2014 examinations will be held during forenoon and afternoon sessions on alternate weekends (Saturday and Sunday) between 1st February 2014 and 2nd March 2014. Examination for some of the papers in GATE 2014 will be held in multiple sessions. Exact details on complete examination schedule will be notified at a later date.

3) A new paper "Ecology and Evolution" is introduced in GATE 2014.

Note : Changes in GATE 2013 that will continue to remain in force for GATE 2014.

Important Dates:

GATE Online Application Processing System (GOAPS) Website Opens: Enrolment, Application Filling, Application Submission Monday 2nd September 2013
Last Date for Enrolment (after this only enrolled candidates can fill the application) Tuesday 1st October 2013
Last Date for Submission of Online Application through Website Thursday 3rd October 2013
Last Date for the receipt of Print-out of the ONLINE Application along with all the supporting documents at the respective Zonal GATE Offices Thursday 10th October 2013
Last Date for Request for Change in the Choice of City Wednesday 20th November 2013
Availability of Admit Card on the GOAPS website for printing Wednesday 18th December 2013
GATE 2014 Online Examination
Forenoon: 9.00 AM to 12.00 Noon
Afternoon: 2.00 PM to 5.00 PM
Saturdays
and Sundays
Between 1st February and 2nd March 2014
Announcement of Results on the Online Application Website Friday 28th March 2014 (10:00 Hrs)

Application Fee:
  • Male Candidates (General/OBC) : Rs.1500/-
  • Women Candidates of any category : Rs.750/-
  • Other Candidates (General/OBC) : Rs.1500/-
  • SC / ST / PD* Category Candidates : Rs.750/-

Examination cities: See the Brochure

How to Apply:
All candidates have to apply only ONLINE. An online interface is provided for your interaction with the GATE Office. With this interface you can
  1. Do Enrolment using “New User Register here”
  2. Fill the online application form
  3. Upload photograph and signature
  4. Pay the application fee through net-banking or indicate your option for payment through bank challan (State Bank of India or Syndicate Bank)
  5. Check the Status of your application form: Received, Under Scrutiny, Accepted, Defect Status, Status after Rectification, Rejected with Valid Reasons, Admit Card Ready for Download, etc.
  6. Contact the Zonal GATE Offices in case of any queries/problems
  7. Download Admit Card
  8. View your responses, marks and GATE score

The login to this interface is through your GOAPS Enrolment ID and a GOAPS password. Keep this information safe and do not disclose it to anyone.

GATE 2014 Score:
After the evaluation of the answers, the raw marks obtained by a candidate will be converted to a normalized GATE Score. From 2013 onwards, the GATE score of a candidate is being computed using the formula given below. The GATE Score of a candidate is computed from:

The GATE 2014 Committee has the authority to decide the qualifying mark/score for each GATE paper. In case any claim or dispute arises in respect of GATE 2014, it is hereby made absolutely clear that the Courts and Tribunals in Kolkata and Kolkata alone shall have the exclusive jurisdiction to entertain and settle any such dispute or claim.

Official Website : http://gate.iitkgp.ac.in/gate2014/

Monday 12 August 2013

Survey: IT pros prefer job profile, brand image over salary

When it comes to employment, many aspirants give more weightage to the job profile and brand image of a company than the salary package, a survey shows.

The survey by Firstnaukri.com, a portal for campus hiring, also found that BE/B.Tech IT students prefer IBM for employment, followed by TCS and Infosys.

"Job profile and brand image of the company continue to rule the choice in comparison to salary package during placements," according to the survey.

The findings are based on questions e-mailed to jobseekers registered with the portal. It covered BE/B.Tech, BBA, BCA, B.Sc, non-IT engineers, finance and computer science graduates and post-graduate students.

"Infosys, TCS and IBM still remain the big giants in campus placements for IT students. It is interesting to note that the students are keener for a good job profile rather than a fat salary package," Firstnaukri.com Business Head Deepali Singh said.

For non-IT engineers, the Defence Research and Development Organisation (DRDO) and L&T are the most preferred brands, followed by Tata Motors and Tata Steel, the report said.

Among MBA and MCA students, it said that Coca-Cola and Bharti Airtel emerged as the preferred employers, followed by Pepsi & Samsung.

Source : TOI

Study:IT managers, engineers hardest to find

IT manager/network administrator, engineer, accountant and software developers are some of the positions that are the hardest to fill globally, says a study.

According to a new global study from human capital solutions firm CareerBuilder, companies around the world have at least one thing in common: difficulty filling in-demand jobs as organisations struggle to find qualified candidates.

In India, the positions that take the longest to fill include -- IT manager/network administrator, computer programmer, accountant, engineer, administrative assistant/ secretary and marketing professional.

This survey was conducted online within the US, Brazil, China, France, Germany, India, Italy, Japan, Russia and the UK by Harris Interactive on behalf of CareerBuilder from May 9 to June 5, 2013 and included more than 5,000 hiring managers and human resource professionals.

The survey further noted that while the positions that take the longest to fill vary from country to country, there are some similarities across the globe as engineering and technology positions and revenue-driving roles such as sales and customer service generally take the longest time to fill.

Besides engineering and technology positions and revenue- driving roles like sales and customer service, countries like US, Russia had difficulty to fill positions like truck driver and security guard, while Japan had difficulty to fill positions like construction worker and tradesperson, it said.

Commenting on the findings, CareerBuilder CEO Matt Ferguson said : "Any positions that remain open for an extended period of time can negatively impact both the financial health of a company and its overall employee morale."

Ferguson added that "we see more hiring managers embracing data tools that can measure market demand and supply of relevant labour in specific geographies, so they can adjust their recruitment strategies and fill vacancies in a timely manner."

Source : TOI