Thursday, 29 August 2013

UML Class Diagram

Overview:

The class diagram is a static diagram. It represents the static view of an application. Class diagram is not only used for visualizing, describing and documenting different aspects of a system but also for constructing executable code of the software application.
The class diagram describes the attributes and operations of a class and also the constraints imposed on the system. The class diagrams are widely used in the modelling of object oriented systems because they are the only UML diagrams which can be mapped directly with object oriented languages.
The class diagram shows a collection of classes, interfaces, associations, collaborations and constraints. It is also known as a structural diagram.

Purpose:

The purpose of the class diagram is to model the static view of an application. The class diagrams are the only diagrams which can be directly mapped with object oriented languages and thus widely used at the time of construction.
The UML diagrams like activity diagram, sequence diagram can only give the sequence flow of the application but class diagram is a bit different. So it is the most popular UML diagram in the coder community.
So the purpose of the class diagram can be summarized as:
  • Analysis and design of the static view of an application.
  • Describe responsibilities of a system.
  • Base for component and deployment diagrams.
  • Forward and reverse engineering.

How to draw Class Diagram?

Class diagrams are the most popular UML diagrams used for construction of software applications. So it is very important to learn the drawing procedure of class diagram.
Class diagrams have lot of properties to consider while drawing but here the diagram will be considered from a top level view.
Class diagram is basically a graphical representation of the static view of the system and represents different aspects of the application. So a collection of class diagrams represent the whole system.
The following points should be remembered while drawing a class diagram:
  • The name of the class diagram should be meaningful to describe the aspect of the system.
  • Each element and their relationships should be identified in advance.
  • Responsibility (attributes and methods) of each class should be clearly identified.
  • For each class minimum number of properties should be specified. Because unnecessary properties will make the diagram complicated.
  • Use notes when ever required to describe some aspect of the diagram. Because at the end of the drawing it should be understandable to the developer/coder.
  • Finally, before making the final version, the diagram should be drawn on plain paper and rework as many times as possible to make it correct.
Now the following diagram is an example of an Order System of an application. So it describes a particular aspect of the entire application.
  • First of all Order and Customer are identified as the two elements of the system and they have a one to many relationship because a customer can have multiple orders.
  • We would keep Order class is an abstract class and it has two concrete classes (inheritance relationship) SpecialOrder and NormalOrder.
  • The two inherited classes have all the properties as the Order class. In addition they have additional functions like dispatch () and receive ().
So the following class diagram has been drawn considering all the points mentioned above:
UML Class Diagram

Where to use Class Diagrams?

Class diagram is a static diagram and it is used to model static view of a system. The static view describes the vocabulary of the system.
Class diagram is also considered as the foundation for component and deployment diagrams. Class diagrams are not only used to visualize the static view of the system but they are also used to construct the executable code for forward and reverse engineering of any system.
Generally UML diagrams are not directly mapped with any object oriented programming languages but the class diagram is an exception.
Class diagram clearly shows the mapping with object oriented languages like Java, C++ etc. So from practical experience class diagram is generally used for construction purpose.
So in a brief, class diagrams are used for:
  • Describing the static view of the system.
  • Showing the collaboration among the elements of the static view.
  • Describing the functionalities performed by the system.
  • Construction of software applications using object oriented languages.

UML Activity Diagram

Overview:

Activity diagram is another important diagram in UML to describe dynamic aspects of the system.
Activity diagram is basically a flow chart to represent the flow form one activity to another activity. The activity can be described as an operation of the system.
So the control flow is drawn from one operation to another. This flow can be sequential, branched or concurrent. Activity diagrams deals with all type of flow control by using different elements like fork, join etc.

Purpose:

The basic purposes of activity diagrams are similar to other four diagrams. It captures the dynamic behaviour of the system. Other four diagrams are used to show the message flow from one object to another but activity diagram is used to show message flow from one activity to another.
Activity is a particular operation of the system. Activity diagrams are not only used for visualizing dynamic nature of a system but they are also used to construct the executable system by using forward and reverse engineering techniques. The only missing thing in activity diagram is the message part.
It does not show any message flow from one activity to another. Activity diagram is some time considered as the flow chart. Although the diagrams looks like a flow chart but it is not. It shows different flow like parallel, branched, concurrent and single.
So the purposes can be described as:
  • Draw the activity flow of a system.
  • Describe the sequence from one activity to another.
  • Describe the parallel, branched and concurrent flow of the system.

How to draw Activity Diagram?

Activity diagrams are mainly used as a flow chart consists of activities performed by the system. But activity diagram are not exactly a flow chart as they have some additional capabilities. These additional capabilities include branching, parallel flow, swimlane etc.
Before drawing an activity diagram we must have a clear understanding about the elements used in activity diagram. The main element of an activity diagram is the activity itself. An activity is a function performed by the system. After identifying the activities we need to understand how they are associated with constraints and conditions.
So before drawing an activity diagram we should identify the following elements:
  • Activities
  • Association
  • Conditions
  • Constraints
Once the above mentioned parameters are identified we need to make a mental layout of the entire flow. This mental layout is then transformed into an activity diagram.
The following is an example of an activity diagram for order management system. In the diagram four activities are identified which are associated with conditions. One important point should be clearly understood that an activity diagram cannot be exactly matched with the code. The activity diagram is made to understand the flow of activities and mainly used by the business users.
The following diagram is drawn with the four main activities:
  • Send order by the customer
  • Receipt of the order
  • Confirm order
  • Dispatch order
After receiving the order request condition checks are performed to check if it is normal or special order. After the type of order is identified dispatch activity is performed and that is marked as the termination of the process.
UML Activity Diagram

Where to use Activity Diagrams?

The basic usage of activity diagram is similar to other four UML diagrams. The specific usage is to model the control flow from one activity to another. This control flow does not include messages.
The activity diagram is suitable for modeling the activity flow of the system. An application can have multiple systems. Activity diagram also captures these systems and describes flow from one system to another. This specific usage is not available in other diagrams. These systems can be database, external queues or any other system.
Now we will look into the practical applications of the activity diagram. From the above discussion it is clear that an activity diagram is drawn from a very high level. So it gives high level view of a system. This high level view is mainly for business users or any other person who is not a technical person.
This diagram is used to model the activities which are nothing but business requirements. So the diagram has more impact on business understanding rather implementation details.
Following are the main usages of activity diagram:
  • Modeling work flow by using activities.
  • Modeling business requirements.
  • High level understanding of the system's functionalities.
  • Investigate business requirements at a later stage.

UML Object Diagram

Overview:

Object diagrams are derived from class diagrams so object diagrams are dependent upon class diagrams.
Object diagrams represent an instance of a class diagram. The basic concepts are similar for class diagrams and object diagrams. Object diagrams also represent the static view of a system but this static view is a snapshot of the system at a particular moment.
Object diagrams are used to render a set of objects and their relationships as an instance.

Purpose:

The purpose of a diagram should be understood clearly to implement it practically. The purposes of object diagrams are similar to class diagrams.
The difference is that a class diagram represents an abstract model consisting of classes and their relationships. But an object diagram represents an instance at a particular moment which is concrete in nature.
It means the object diagram is more close to the actual system behaviour. The purpose is to capture the static view of a system at a particular moment.
So the purpose of the object diagram can be summarized as:
  • Forward and reverse engineering.
  • Object relationships of a system
  • Static view of an interaction.
  • Understand object behaviour and their relationship from practical perspective

How to draw Object Diagram?

We have already discussed that an object diagram is an instance of a class diagram. It implies that an object diagram consists of instances of things used in a class diagram.
So both diagrams are made of same basic elements but in different form. In class diagram elements are in abstract form to represent the blue print and in object diagram the elements are in concrete form to represent the real world object.
To capture a particular system, numbers of class diagrams are limited. But if we consider object diagrams then we can have unlimited number of instances which are unique in nature. So only those instances are considered which are having impact on the system.
From the above discussion it is clear that a single object diagram cannot capture all the necessary instances or rather cannot specify all objects of a system. So the solution is:
  • First, analyze the system and decide which instances are having important data and association.
  • Second, consider only those instances which will cover the functionality.
  • Third, make some optimization as the numbers of instances are unlimited.
Before drawing an object diagrams the following things should be remembered and understood clearly:
  • Object diagrams are consist of objects.
  • The link in object diagram is used to connect objects.
  • Objects and links are the two elements used to construct an object diagram.
Now after this the following things are to be decided before starting the construction of the diagram:
  • The object diagram should have a meaningful name to indicate its purpose.
  • The most important elements are to be identified.
  • The association among objects should be clarified.
  • Values of different elements need to be captured to include in the object diagram.
  • Add proper notes at points where more clarity is required.
The following diagram is an example of an object diagram. It represents the Order management system which we have discussed in Class Diagram. The following diagram is an instance of the system at a particular time of purchase. It has the following objects
  • Customer
  • Order
  • SpecialOrder
  • NormalOrder
Now the customer object (C) is associated with three order objects (O1, O2 and O3). These order objects are associated with special order and normal order objects (S1, S2 and N1). The customer is having the following three orders with different numbers (12, 32 and 40) for the particular time considered.
Now the customer can increase number of orders in future and in that scenario the object diagram will reflect that. If order, special order and normal order objects are observed then we you will find that they are having some values.
For orders the values are 12, 32, and 40 which implies that the objects are having these values for the particular moment (here the particular time when the purchase is made is considered as the moment) when the instance is captured.
The same is for special order and normal order objects which are having number of orders as 20, 30 and 60. If a different time of purchase is considered then these values will change accordingly.
So the following object diagram has been drawn considering all the points mentioned above:
UML Object Diagram

Where to use Object Diagrams?

Object diagrams can be imagined as the snapshot of a running system at a particular moment. Now to clarify it we can take an example of a running train.
Now if you take a snap of the running train then you will find a static picture of it having the following:
  • A particular state which is running
  • A particular number of passengers. which will change if the snap is taken in a different time.
So here we can imagine the snap of the running train is an object having the above values. And this is true for any real life simple or complex system. In a brief, object diagrams are used for:
  • Making the prototype of a system.
  • Reverse engineering.
  • Modeling complex data structures.
  • Understanding the system from practical perspective.

UML Interaction Diagram Also called Sequence Diagram

Overview:

From the name Interaction it is clear that the diagram is used to describe some type of interactions among the different elements in the model. So this interaction is a part of dynamic behaviour of the system.
This interactive behaviour is represented in UML by two diagrams known as Sequence diagramand Collaboration diagram. The basic purposes of both the diagrams are similar.
Sequence diagram emphasizes on time sequence of messages and collaboration diagram emphasizes on the structural organization of the objects that send and receive messages.

Purpose:

The purposes of interaction diagrams are to visualize the interactive behaviour of the system. Now visualizing interaction is a difficult task. So the solution is to use different types of models to capture the different aspects of the interaction.
That is why sequence and collaboration diagrams are used to capture dynamic nature but from a different angle.
So the purposes of interaction diagram can be describes as:
  • To capture dynamic behaviour of a system.
  • To describe the message flow in the system.
  • To describe structural organization of the objects.
  • To describe interaction among objects.

How to draw Interaction Diagram?

As we have already discussed that the purpose of interaction diagrams are to capture the dynamic aspect of a system. So to capture the dynamic aspect we need to understand what a dynamic aspect is and how it is visualized. Dynamic aspect can be defined as the snap shot of the running system at a particular moment.
We have two types of interaction diagrams in UML. One is sequence diagram and the other is a collaboration diagram. The sequence diagram captures the time sequence of message flow from one object to another and the collaboration diagram describes the organization of objects in a system taking part in the message flow.
So the following things are to identified clearly before drawing the interaction diagram:
  • Objects taking part in the interaction.
  • Message flows among the objects.
  • The sequence in which the messages are flowing.
  • Object organization.
Following are two interaction diagrams modeling order management system. The first diagram is a sequence diagram and the second is a collaboration diagram.

The Sequence Diagram:

The sequence diagram is having four objects (Customer, Order, SpecialOrder and NormalOrder).
The following diagram has shown the message sequence for SpecialOrder object and the same can be used in case of NormalOrder object. Now it is important to understand the time sequence of message flows. The message flow is nothing but a method call of an object.
The first call is sendOrder () which is a method of Order object. The next call is confirm () which is a method of SpecialOrder object and the last call is Dispatch () which is a method ofSpecialOrder object. So here the diagram is mainly describing the method calls from one object to another and this is also the actual scenario when the system is running.
UML Sequence Diagram

The Collaboration Diagram:

The second interaction diagram is collaboration diagram. It shows the object organization as shown below. Here in collaboration diagram the method call sequence is indicated by some numbering technique as shown below. The number indicates how the methods are called one after another. We have taken the same order management system to describe the collaboration diagram.
The method calls are similar to that of a sequence diagram. But the difference is that the sequence diagram does not describe the object organization where as the collaboration diagram shows the object organization.
Now to choose between these two diagrams the main emphasis is given on the type of requirement. If the time sequence is important then sequence diagram is used and if organization is required then collaboration diagram is used.
UML Collaboration Diagram

Where to use Interaction Diagrams?

We have already discussed that interaction diagrams are used to describe dynamic nature of a system. Now we will look into the practical scenarios where these diagrams are used. To understand the practical application we need to understand the basic nature of sequence and collaboration diagram.
The main purposes of both the diagrams are similar as they are used to capture the dynamic behaviour of a system. But the specific purposes are more important to clarify and understood.
Sequence diagrams are used to capture the order of messages flowing from one object to another. And the collaboration diagrams are used to describe the structural organizations of the objects taking part in the interaction. A single diagram is not sufficient to describe the dynamic aspect of an entire system so a set of diagrams are used to capture is as a whole.
The interaction diagrams are used when we want to understand the message flow and the structural organization. Now message flow means the sequence of control flow from one object to another and structural organization means the visual organization of the elements in a system.
In a brief the following are the usages of interaction diagrams:
  • To model flow of control by time sequence.
  • To model flow of control by structural organizations.
  • For forward engineering.
  • For reverse engineering.

UML Component Diagram

Overview:

Component diagrams are different in terms of nature and behaviour. Component diagrams are used to model physical aspects of a system.
Now the question is what are these physical aspects? Physical aspects are the elements like executables, libraries, files, documents etc which resides in a node.
So component diagrams are used to visualize the organization and relationships among components in a system. These diagrams are also used to make executable systems.

Purpose:

Component diagram is a special kind of diagram in UML. The purpose is also different from all other diagrams discussed so far. It does not describe the functionality of the system but it describes the components used to make those functionalities.
So from that point component diagrams are used to visualize the physical components in a system. These components are libraries, packages, files etc.
Component diagrams can also be described as a static implementation view of a system. Static implementation represents the organization of the components at a particular moment.
A single component diagram cannot represent the entire system but a collection of diagrams are used to represent the whole.
So the purpose of the component diagram can be summarized as:
  • Visualize the components of a system.
  • Construct executables by using forward and reverse engineering.
  • Describe the organization and relationships of the components.

How to draw Component Diagram?

Component diagrams are used to describe the physical artifacts of a system. This artifact includes files, executables, libraries etc.
So the purpose of this diagram is different, Component diagrams are used during the implementation phase of an application. But it is prepared well in advance to visualize the implementation details.
Initially the system is designed using different UML diagrams and then when the artifacts are ready component diagrams are used to get an idea of the implementation.
This diagram is very important because without it the application cannot be implemented efficiently. A well prepared component diagram is also important for other aspects like application performance, maintenance etc.
So before drawing a component diagram the following artifacts are to be identified clearly:
  • Files used in the system.
  • Libraries and other artifacts relevant to the application.
  • Relationships among the artifacts.
Now after identifying the artifacts the following points needs to be followed:
  • Use a meaningful name to identify the component for which the diagram is to be drawn.
  • Prepare a mental layout before producing using tools.
  • Use notes for clarifying important points.
The following is a component diagram for order management system. Here the artifacts are files. So the diagram shows the files in the application and their relationships. In actual the component diagram also contains dlls, libraries, folders etc.
In the following diagram four files are identified and their relationships are produced. Component diagram cannot be matched directly with other UML diagrams discussed so far. Because it is drawn for completely different purpose.
So the following component diagram has been drawn considering all the points mentioned above:
UML Component Diagram

Where to use Component Diagrams?

We have already described that component diagrams are used to visualize the static implementation view of a system. Component diagrams are special type of UML diagrams used for different purposes.
These diagrams show the physical components of a system. To clarify it, we can say that component diagrams describe the organization of the components in a system.
Organization can be further described as the location of the components in a system. These components are organized in a special way to meet the system requirements.
As we have already discussed those components are libraries, files, executables etc. Now before implementing the application these components are to be organized. This component organization is also designed separately as a part of project execution.
Component diagrams are very important from implementation perspective. So the implementation team of an application should have a proper knowledge of the component details.
Now the usage of component diagrams can be described as:
  • Model the components of a system.
  • Model database schema.
  • Model executables of an application.
  • Model system's source code.

UML Deployment Diagram

Overview:

Deployment diagrams are used to visualize the topology of the physical components of a system where the software components are deployed.
So deployment diagrams are used to describe the static deployment view of a system. Deployment diagrams consist of nodes and their relationships.

Purpose:

The name Deployment itself describes the purpose of the diagram. Deployment diagrams are used for describing the hardware components where software components are deployed. Component diagrams and deployment diagrams are closely related.
Component diagrams are used to describe the components and deployment diagrams shows how they are deployed in hardware.
UML is mainly designed to focus on software artifacts of a system. But these two diagrams are special diagrams used to focus on software components and hardware components.
So most of the UML diagrams are used to handle logical components but deployment diagrams are made to focus on hardware topology of a system. Deployment diagrams are used by the system engineers.
The purpose of deployment diagrams can be described as:
  • Visualize hardware topology of a system.
  • Describe the hardware components used to deploy software components.
  • Describe runtime processing nodes.

How to draw Deployment Diagram?

Deployment diagram represents the deployment view of a system. It is related to the component diagram. Because the components are deployed using the deployment diagrams. A deployment diagram consists of nodes. Nodes are nothing but physical hardwares used to deploy the application.
Deployment diagrams are useful for system engineers. An efficient deployment diagram is very important because it controls the following parameters
  • Performance
  • Scalability
  • Maintainability
  • Portability
So before drawing a deployment diagram the following artifacts should be identified:
  • Nodes
  • Relationships among nodes
The following deployment diagram is a sample to give an idea of the deployment view of order management system. Here we have shown nodes as:
  • Monitor
  • Modem
  • Caching server
  • Server
The application is assumed to be a web based application which is deployed in a clustered environment using server 1, server 2 and server 3. The user is connecting to the application using internet. The control is flowing from the caching server to the clustered environment.
So the following deployment diagram has been drawn considering all the points mentioned above:
UML Deployment Diagram

Where to use Deployment Diagrams?

Deployment diagrams are mainly used by system engineers. These diagrams are used to describe the physical components (hardwares), their distribution and association.
To clarify it in details we can visualize deployment diagrams as the hardware components/nodes on which software components reside.
Software applications are developed to model complex business processes. Only efficient software applications are not sufficient to meet business requirements. Business requirements can be described as to support increasing number of users, quick response time etc.
To meet these types of requirements hardware components should be designed efficiently and in a cost effective way.
Now a day's software applications are very complex in nature. Software applications can be stand alone, web based, distributed, mainframe based and many more. So it is very important to design the hardware components efficiently.
So the usage of deployment diagrams can be described as follows:
  • To model the hardware topology of a system.
  • To model embedded system.
  • To model hardware details for a client/server system.
  • To model hardware details of a distributed application.
  • Forward and reverse engineering.

Unified Modeling Language (Visual Paradigm)

UML Statechart Diagram:

Overview:

The name of the diagram itself clarifies the purpose of the diagram and other details. It describes different states of a component in a system. The states are specific to a component/object of a system.
A Statechart diagram describes a state machine. Now to clarify it state machine can be defined as a machine which defines different states of an object and these states are controlled by external or internal events.
Activity diagram explained in next chapter, is a special kind of a Statechart diagram. As Statechart diagram defines states it is used to model lifetime of an object.

Purpose:

Statechart diagram is one of the five UML diagrams used to model dynamic nature of a system. They define different states of an object during its lifetime. And these states are changed by events. So Statechart diagrams are useful to model reactive systems. Reactive systems can be defined as a system that responds to external or internal events.
Statechart diagram describes the flow of control from one state to another state. States are defined as a condition in which an object exists and it changes when some event is triggered. So the most important purpose of Statechart diagram is to model life time of an object from creation to termination.
Statechart diagrams are also used for forward and reverse engineering of a system. But the main purpose is to model reactive system.
Following are the main purposes of using Statechart diagrams:
  • To model dynamic aspect of a system.
  • To model life time of a reactive system.
  • To describe different states of an object during its life time.
  • Define a state machine to model states of an object.

How to draw Statechart Diagram?

Statechart diagram is used to describe the states of different objects in its life cycle. So the emphasis is given on the state changes upon some internal or external events. These states of objects are important to analyze and implement them accurately.
Statechart diagrams are very important for describing the states. States can be identified as the condition of objects when a particular event occurs.
Before drawing a Statechart diagram we must have clarified the following points:
  • Identify important objects to be analyzed.
  • Identify the states.
  • Identify the events.
The following is an example of a Statechart diagram where the state of Order object is analyzed.
The first state is an idle state from where the process starts. The next states are arrived for events like send requestconfirm request, and dispatch order. These events are responsible for state changes of order object.
During the life cycle of an object (here order object) it goes through the following states and there may be some abnormal exists also. This abnormal exit may occur due to some problem in the system. When the entire life cycle is complete it is considered as the complete transaction as mentioned below.
The initial and final state of an object is also shown below.
UML Statechart Diagram

Where to use Statechart Diagrams?

From the above discussion we can define the practical applications of a Statechart diagram. Statechart diagrams are used to model dynamic aspect of a system like other four diagrams disused in this tutorial. But it has some distinguishing characteristics for modeling dynamic nature.
Statechart diagram defines the states of a component and these state changes are dynamic in nature. So its specific purpose is to define state changes triggered by events. Events are internal or external factors influencing the system.
Statechart diagrams are used to model states and also events operating on the system. When implementing a system it is very important to clarify different states of an object during its life time and statechart diagrams are used for this purpose. When these states and events are identified they are used to model it and these models are used during implementation of the system.
If we look into the practical implementation of Statechart diagram then it is mainly used to analyze the object states influenced by events. This analysis is helpful to understand the system behaviour during its execution.
So the main usages can be described as:
  • To model object states of a system.
  • To model reactive system. Reactive system consists of reactive objects.
  • To identify events responsible for state changes.
  • Forward and reverse engineering.

Friday, 16 August 2013

15 Aug 1947 (27 Ramzan, Raat Shabe Qadr Ki/Friday)

It coincided that year with Shab-e-Qadr or the 27th day of the holy month of Ramadan. This day is considered most special by the faithful and the night is spent in prayers.

In the years that followed, Pakistan continued to celebrate its Independence Day on August 14. The country celebrated its 67th Independence Day yesterday.

Yasser Latif Hamdani, a Lahore-based lawyer and author of "Jinnah: Myth and Reality", told PTI: "Pakistan was to celebrate its Independence Day on August 15 but because of Shab-e-Qadr it was advanced by a day in 1948. However, it stuck to its mistake and continued to celebrate following Independence Days on August 14 too."
MUSALMAN AUR HINDUSTAN!
Mili Aazadi Jis-se Wo Shakhs Musalman Hi Tha,
Diya Hind ko Taj Mahal jisne
Wo Shakhs Musalman Hi Tha,
Aaj kehte Hain Kuch Log Ke Dehshat Gard Hai Musalman,
Shuru ki Jisne Jang-E-Aazadi ki
Wo Tipu Sultan Musalman hi Tha,
Jaha Lehrata Hain Tiranga Aaj BhiBadi Shaan Se,
Kiya Tameer Jisne Laal Qila
Wo Shakhs Musalman Hi Tha, 
Sare Jahan se Achcha HINDUSTAN hamara,
Likha Jisne TARAN E- HIND wo IQBAL Muslman hi tha,
Yun Hi Nahi Azad Ho Gaya Azad-e- Hind,
Jab Azadi Mili Hind Ko Woh Mahina Ramzan Hi Tha.
15 Aug 1947 (27 Ramzan, Raat Shabe Qadr Ki Or Din Juma ka tha)
 

APSCHE EAMCET

APSCHE EAMCET







Got a Ranking in Engineering Entrance Exams Excellent  - What's Next ?

Most of the students are very happy that they have got good marks....but few of them are sad.
But those who are having good marks and cleared engineering entrance examination are still worried. Why ?


• Whether they will get admission in good college or not?
• What will be the Cut off percentage of different colleges ?
• What are the different courses available in different colleges ?
• Which branch should i take ?
• Which college i will get at this rank ?
and so and so !!!

Here we will discuss these question in detail but one by one

First of all which branch should i take ?

This question is very difficult because if u ask X,Y,Z then u will get X,Y,Z answer....but what is right for u let examine yourself..give the answer some of the question honestly and then decide yourself.

What is your criteria for choosing a branch?

(a) Job Opportunity
(b) Money
(c) Parents wish
(d) Your interest


(a) Job opportunity: This is the most important criteria for choosing a branch in a cut throat competition environment. This is true that branches like computer science, Information Technology and electronics are amongst the huge job provider and that's why they are the first choice of most of the students in last years counselling. But it's not means that other branches are less important as far as job opportunity is concerned, other branches are equally good the only difference is that most of the software industry are mass recruiter but core industry are not.


(b) Money : This is also one of the most important factor for choosing a branch.The answer of this question is very difficult because money making is depend upon individual talent not on your branch. It does not mean that if you are in computer science, Information Technology or electronics (which are the most preferred choice of students) then you will make a lot of money....even in other branches like mechanical, electrical, chemical or production, civil etc. you can make money. It is one of the misconception that software engineer are making more money. Only few of them are able to do it and again it's depend on your talent and hard work so no particular branch is moneymaker and in every branch you can make money.


(c) Parents Wish: This option is very emotional and worth meaning. Most of the parents wants only those branch in which job opportunity and money are more so for parents i request please go through above paragraphs and don't force your children to go for a particular branch only because of particular reason.

(d) Your Interest: This is the most important and worthy factor which is ignored by most of the parents and students. As mentioned earlier that each and every branch okay. It Is your intrest that make money and satisfaction.because after four year of your graduation u will be in industry and then whole of your life will be with same branch and work which u have opted today.....if you are interested in it then ii is good but if you are not then the words tension,stress,dissatisfaction, depression will come into picture because you are working for money not for your interest and hobby.You are working with those things which you have not liked in your four year of graduation but now you have to pass whole of your life with this branch. So always keep your interest first.

   To choose an Right Engineering College

The question arises that how to decide a college when there are thousands of engineering colleges in India. In this article we will discuss some of the features of colleges which will help you choose the right college. There are various factor while deciding a college for admission but always keep in mind the following factors while choosing a college:

Infrastructure: This is the most important factor while choosing a college Infrastructure does not means good looking building only. It means that whether a college has sufficient amount of infrastructure according to it's intake capacity. It include classroom, administrative building, workshop, computer labs, various laboratories etc. Because during your four year of graduation you need all these things, so keep it your first preference while choosing a college.

Faculty: Having a good infrastructure is not enough only. After having a sufficient infrastructure it is the faculty that make it useful, otherwise it will be a school without a teacher. Always have a look on college faculty which include Professors, reader, lecturer, teacher-student ratio, visiting faculty, teaching experience etc.

Facilities: This is another important factor that you have to keep in mind.Facilities provided by college assist you during your college period.It include Library, Internet, intranet, hostels, seminar halls, dispensary, student clubs, gym etc.

Placements: This is the most important factor while deciding a college. It not mean that it is the first and last criteria to choose a college. Placements of a college depend upon many factor like it's infrastructure,faculty,facilities provided by college to it's student,college rank, past performance of the students in company, and last but not the least individual talent and personality and many more factors. Have a look on past placement record of college branch wise as well as company wise.So keep all the things in mind while deciding a college.

Extra curricular activities: This is also one of the factor that should be taken into account because "all work and no play make jack a dull boy" this is true beacuse you have not to study only but have to survive in a competitive environment and for that u have to be a good personality.Extra curricular activities play a very important role in your personality development.So have a look about extra activities provided by college like, annual function, sport function, students club, seminars and workshops, industrial training, social activities, NCC, NSS etc.

Location: This factor does not play a very important role but if it is nearby any industrial or software hub then it may be slightly useful to you as far as your industrial training and placement is concerned but keep this factor at last.

So now question arises that how you can get so much of information about each and every college there are some tips for you

1.Visit the college web site on Internet

2.consult your seniors

3.visit the college personally if possible

4.Take the help of counselor.

How to choose the Right Engineering Branch ?

This is the most difficult question to answer. In my last article i have told you how to choose a college but in this article i will not tell you how to choose a branch but you will tell me that which branch do you like most.

Don't worry i know it is very difficult for you to give the answer so i am here to help you to know your interest in a particular branch. It's very simple just give the answer of some question and then decide yourself that which branch do you like most or which branch suited to you according to your interest.We will discuss branch wise so that you can choose tour branch according to your interest.

Computer Science & Engineering

1.Do you like computer ? (I am not talking about computer games and Internet)
2.Do you want to do something new in computer ?
3.Do you always experiment with your computer and surprise others ?
4 Are you strong enough in mathematics and logic making skills ?
5.Do you like puzzles ?
6.Are you having a good IQ.

If you answer most of the question in yes then this is the branch for you and you are made for this branch. This branch require a good logic making skills and good aptitude ,innovation and hard work. If you are having all these things in you then go for this branch. Information Technology This branch require the same skills as in Computer science & engineering. There is a little bit difference in their syllabus content. There is no big difference as far as placement and job opportunity is concerned both the branch are equally good and well payed.

Electrical & Electronics

1. Have you ever open your switch board and repair it ?
2. Do you want to know the functioning of your home electrical appliances ?
3. Do you want to know what is really going on in a computer CPU ?
4. Are u interested in sensors & transistor ?
5. Do you want to make your own robot ?

If yes then this is the branch for you, again there is a small difference in electrical and electronics most of the syllabus content are same. In most college theses are separate branches but in some college they are same. In short we can say that electronics is subset of electrical. As far as placement and job opportunity is concerned then it depend from college to college.

Mechanical & production Engineering

1.Are you interested in bike and cars design ?
2.Do you take interest in functioning of daily routine things ?
3.Do you ask basic question to your teachers(i.e how this works ? how that works ?)
4.Do you like physics ?
5.Do you like to make some new mechanism ?
6.Do you like to use your engineering skills for a common man life ?
if yes then you are at right place this is the branch for you. This branch require a real hard work. In most of the colleges mechanical and production are different branches but there syllabus content are more or less similar but in few college this is combine. There is a misconception that in this branch's job opportunity are less as compared to computer science and electronics. Again it's depend upon individual .This is called evergreen branch ,now a days there are a lot of job opportunity and money in this sector if you have talent and ready to work hard.

Civil Engineering

1.Are you interested in building making ?
2.Are you ready to rock the world by your talent ?
3.Have you ever think how this can be done after seeing a building ?
if yes then this is the branch for you. There is a misconception that in this branch's job opportunity are less as compared to others branch. It is not so, if you are hardworking and talented then there are a lot of opportunity in this sector.

Then best of luck and go ahead. I think now you can decide your branch If you don't get the branch of your choice by mistake or due to your lower rank then don't worry I will tell you how to deal with this situation. This is not the end.

Got a wrong branch - What to do ?

This is the problem of most of the students. After the admission they realize that they have got the wrong branch or this branch is not for him/her. This may happen due to your mistake or due to your lower rank.

But this is not the end even now you can change your branch or can do something else. Surprised ! Yes it is true I will tell you how this is possible ?

If you have taken admission through AIEEE in NIT's then it is possible there are two ways.

1.Branch sliding
2.Branch change

1. Branch sliding

After your admission any NIT in the month of September-December if any of the seat in any branch remain vacant due to some reason then it is filled by the respective candidate of that state or UT on the basis of your AIEEE rank. Here you have a good chance to change your branch once more but it totally depends upon

(a) No. of seat vacant
(b)Your AIEEE rank

if your branch is not changed till now then don't worry you will have another chance to change your branch and this time it will be totally depend upon you and your academic performance throughout first year. This is a golden chance for you.

2.Branch change:
This happens at the end of second semester to give a chance of meritorious student to change their branch but rules are different from institute to institute. Like

(a) Minimum no of marks/CGPA(combined grand performance index)required in your first year
(b) Max. no of seat available for branch change.

Here it totally depends upon your academic performance so be ready for this and work hard throughout year to catch this opportunity.

Even now if your branch is not changed due to some reason then don't be disappointed. If You want to change the branch for job opportunity reason only, then don't worry because now a days software companies are allowing each branch for recruitment and you can be a software engineer .It does not matter from which discipline you are. So enjoy your studies and best of luck